When exoplanets pass in front of their host star (as seen from Earth), a portion of the start light is blocked out and a decrease in the photon flux is measured. Measuring the change in flux over time, allows for the creation of a light curve. Fitting models to the light curve, various characteristics such as orbital motions and atmospheric composition can be extracted. Both the size of the host star and the planet will determine the decrease in flux during the transit. The orbital distance between the exoplanet and its host star does not affect the transit depth due to the enormous distance from Earth.

The transit method is particularly useful for calculating the radius of an exoplanet. To first order (assuming the stellar disc is of uniform brightness, and neglecting any flux from the planet) the ratio of the observed change in flux, \Delta F, to that of the stellar flux F can be expressed as: